Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Vaccine ; 40(26): 3621-3632, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577631

RESUMO

Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus (NDV) vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Wuhan-Hu-1. The spike protein was stabilized and incorporated into NDV virions by removing the polybasic furin cleavage site, introducing the transmembrane domain and cytoplasmic tail of the fusion protein of NDV, and introducing six prolines for stabilization in the prefusion state. Vaccine production and clinical development was initiated in Vietnam, Thailand, and Brazil. Here the interim results from the first stage of the randomized, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial conducted at the Hanoi Medical University (Vietnam) are presented. Healthy adults aged 18-59 years, non-pregnant, and with self-reported negative history for SARS-CoV-2 infection were eligible. Participants were randomized to receive one of five treatments by intramuscular injection twice, 28 days apart: 1 µg +/- CpG1018 (a toll-like receptor 9 agonist), 3 µg alone, 10 µg alone, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited adverse events (AEs) during 7 days and subject-reported AEs during 28 days after each vaccination. Investigators further reviewed subject-reported AEs. Secondary outcomes were immunogenicity measures (anti-spike immunoglobulin G [IgG] and pseudotyped virus neutralization). This interim analysis assessed safety 56 days after first vaccination (day 57) in treatment-exposed individuals and immunogenicity through 14 days after second vaccination (day 43) per protocol. Between March 15 and April 23, 2021, 224 individuals were screened and 120 were enrolled (25 per group for active vaccination and 20 for placebo). All subjects received two doses. The most common solicited AEs among those receiving active vaccine or placebo were all predominantly mild and included injection site pain or tenderness (<58%), fatigue or malaise (<22%), headache (<21%), and myalgia (<14%). No higher proportion of the solicited AEs were observed for any group of active vaccine. The proportion reporting vaccine-related AEs during the 28 days after either vaccination ranged from 4% to 8% among vaccine groups and was 5% in controls. No vaccine-related serious adverse event occurred. The immune response in the 10 µg formulation group was highest, followed by 1 µg + CpG1018, 3 µg, and 1 µg formulations. Fourteen days after the second vaccination, the geometric mean concentrations (GMC) of 50% neutralizing antibody against the homologous Wuhan-Hu-1 pseudovirus ranged from 56.07 IU/mL (1 µg, 95% CI 37.01, 84.94) to 246.19 IU/mL (10 µg, 95% CI 151.97, 398.82), with 84% to 96% of vaccine groups attaining a ≥ 4-fold increase over baseline. This was compared to a panel of human convalescent sera (N = 29, 72.93 95% CI 33.00-161.14). Live virus neutralization to the B.1.617.2 (Delta) variant of concern was reduced but in line with observations for vaccines currently in use. Since the adjuvant has shown modest benefit, GMC ratio of 2.56 (95% CI, 1.4-4.6) for 1 µg +/- CpG1018, a decision was made not to continue studying it with this vaccine. NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg dose was advanced to phase 2 along with a 6 µg dose. The 10 µg dose was not selected for evaluation in phase 2 due to potential impact on manufacturing capacity. ClinicalTrials.gov NCT04830800.


Assuntos
COVID-19 , SARS-CoV-2 , Adjuvantes Imunológicos , Adolescente , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , COVID-19/terapia , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Humanos , Imunização Passiva , Imunogenicidade da Vacina , Pessoa de Meia-Idade , Vírus da Doença de Newcastle/genética , Glicoproteína da Espícula de Coronavírus , Vacinas de Produtos Inativados/efeitos adversos , Vietnã , Adulto Jovem , Soroterapia para COVID-19
2.
EClinicalMedicine ; 45: 101323, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284808

RESUMO

Background: Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based recombinant Newcastle disease virus vaccine expressing the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed by public sector manufacturers in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. Methods: This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy males and non-pregnant females, aged 18-59 years and negative for SARS-CoV-2 antibodies, were eligible. Participants were randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 µg, 1 µg+CpG1018 (a toll-like receptor 9 agonist), 3 µg, 3 µg+CpG1018, 10 µg, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov (NCT04764422). Findings: Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enroled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5·7% to 17·1% among vaccine groups and was 2·9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation's immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122·23 international units per mL (IU/mL; 1 µg, 95% confidence interval (CI) 86·40-172·91) to 474·35 IU/mL (10 µg, 95% CI 320·90-701·19), with 93·9% to 100% of vaccine groups attaining a ≥ 4-fold increase over baseline. Interpretation: NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg and 3 µg+CpG1018 formulations advanced to phase 2. Funding: National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA).

3.
Nat Commun ; 12(1): 6197, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707161

RESUMO

Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.


Assuntos
Vírus da Doença de Newcastle/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Doença de Newcastle/metabolismo , SARS-CoV-2/patogenicidade , Vacinas Atenuadas/uso terapêutico
4.
medRxiv ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34580673

RESUMO

BACKGROUND: Production of affordable coronavirus disease 2019 (COVID-19) vaccines in low- and middle-income countries is needed. NDV-HXP-S is an inactivated egg-based Newcastle disease virus vaccine expressing the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It's being developed in Thailand, Vietnam, and Brazil; herein are initial results from Thailand. METHODS: This phase 1 stage of a randomised, dose-escalation, observer-blind, placebo-controlled, phase 1/2 trial was conducted at the Vaccine Trial Centre, Mahidol University (Bangkok). Healthy adults aged 18-59 years, non-pregnant and negative for SARS-CoV-2 antibodies were eligible. Participants were block randomised to receive one of six treatments by intramuscular injection twice, 28 days apart: 1 µg±CpG1018 (a toll-like receptor 9 agonist), 3 µg±CpG1018, 10 µg, or placebo. Participants and personnel assessing outcomes were masked to treatment. The primary outcomes were solicited and spontaneously reported adverse events (AEs) during 7 and 28 days after each vaccination, respectively. Secondary outcomes were immunogenicity measures (anti-S IgG and pseudotyped virus neutralisation). An interim analysis assessed safety at day 57 in treatment-exposed individuals and immunogenicity through day 43 per protocol. ClinicalTrials.gov ( NCT04764422 ). FINDINGS: Between March 20 and April 23, 2021, 377 individuals were screened and 210 were enrolled (35 per group); all received dose one; five missed dose two. The most common solicited AEs among vaccinees, all predominantly mild, were injection site pain (<63%), fatigue (<35%), headache (<32%), and myalgia (<32%). The proportion reporting a vaccine-related AE ranged from 5·7% to 17·1% among vaccine groups and was 2·9% in controls; there was no vaccine-related serious adverse event. The 10 µg formulation's immunogenicity ranked best, followed by 3 µg+CpG1018, 3 µg, 1 µg+CpG1018, and 1 µg formulations. On day 43, the geometric mean concentrations of 50% neutralising antibody ranged from 122·23 IU/mL (1 µg, 95% CI 86·40-172·91) to 474·35 IU/mL (10 µg, 95% CI 320·90-701·19), with 93·9% to 100% of vaccine groups attaining a ≥4-fold increase over baseline. INTERPRETATION: NDV-HXP-S had an acceptable safety profile and potent immunogenicity. The 3 µg and 3 µg+CpG1018 formulations advanced to phase 2. FUNDING: National Vaccine Institute (Thailand), National Research Council (Thailand), Bill & Melinda Gates Foundation, National Institutes of Health (USA).

5.
Nat Commun, v. 12, 6197, out. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4045

RESUMO

Rapid development of COVID-19 vaccines has helped mitigating SARS-CoV-2 spread, but more equitable allocation of vaccines is necessary to limit the global impact of the COVID-19 pandemic and the emergence of additional variants of concern. We have developed a COVID-19 vaccine candidate based on Newcastle disease virus (NDV) that can be manufactured at high yields in embryonated eggs. Here, we show that the NDV vector expressing an optimized spike antigen (NDV-HXP-S) is a versatile vaccine inducing protective antibody responses. NDV-HXP-S can be administered intramuscularly as inactivated vaccine or intranasally as live vaccine. We show that NDV-HXP-S GMP-produced in Vietnam, Thailand and Brazil is effective in the hamster model. Furthermore, we show that intramuscular vaccination with NDV-HXP-S reduces replication of tested variants of concerns in mice. The immunity conferred by NDV-HXP-S effectively counteracts SARS-CoV-2 infection in mice and hamsters.

6.
Vaccine ; 34(45): 5430-5435, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27484011

RESUMO

With the support of the Biomedical Advanced Research and Development Authority (BARDA) of the US Department of Health and Human Services, PATH has contributed to the World Health Organization's (WHO's) Global Action Plan for Influenza Vaccines (GAP) by providing technical and clinical assistance to several developing country vaccine manufacturers (DCVMs). GAP builds regionally based independent and sustainable influenza vaccine production capacity to mitigate the overall global shortage of influenza vaccines. The program also ensures adequate influenza vaccine manufacturing capacity in the event of an influenza pandemic. Since 2009, PATH has worked closely with two DCVMs in Vietnam: the Institute of Vaccines and Medical Biologicals (IVAC) and VABIOTECH. Beginning in 2013, PATH also began working with Torlak Institute in Serbia; Instituto Butantan in Brazil; Serum Institute of India Private Ltd. in India; and Changchun BCHT Biotechnology Co. (BCHT) in China. The DCVMs supported under the GAP program all had existing influenza vaccine manufacturing capability and required technical support from PATH to improve vaccine yield, process efficiency, and product formulation. PATH has provided customized technical support for the manufacturing process to each DCVM based on their respective requirements. Additionally, PATH, working with BARDA and WHO, supported several DCVMs in the clinical development of influenza vaccine candidates progressing toward national licensure or WHO prequalification. As a result of the activities outlined in this review, several companies were able to make excellent progress in developing state-of-the-art manufacturing processes and completing early phase clinical trials. Licensure trials are currently ongoing or planned for several DCVMs.


Assuntos
Vacinas contra Influenza/química , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Tecnologia Farmacêutica/organização & administração , Ensaios Clínicos como Assunto , Países em Desenvolvimento , Humanos , Vacinas contra Influenza/normas , Vacinas contra Influenza/provisão & distribuição , Controle de Qualidade , Tecnologia Farmacêutica/tendências , Estados Unidos , United States Dept. of Health and Human Services , Organização Mundial da Saúde
7.
J Virol Methods ; 102(1-2): 15-25, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11879689

RESUMO

Various diluents, stabilizers, buffers, and storage conditions were assessed for their efficacy in stabilizing cold-adapted influenza virus vaccine. Frozen liquid vaccine formulations, comprised of a normal uninfected allantoic fluid diluent and an SPG (sucrose-phosphate-glutamate) stabilizer, generated complete stability of H1N1, H3N2, and Type B strains for at least 1 year of storage at -20 degrees C. The ability to store live influenza virus frozen liquid vaccines, at the moderate temperature of -20 degrees C, has not been demonstrated previously. This significant advance could facilitate influenza vaccine storage and administration in the clinic, and subsequently increase marketability. The stability of lyophilized formulations was also augmented by the addition of 2% Casitone and the control of pH with 0.066 M phosphate in the SPG stabilizer. This alternative formulation may be useful in markets where freezing is not feasible or short-term room temperature storage is necessary.


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana/prevenção & controle , Adaptação Fisiológica , Temperatura Baixa , Armazenamento de Medicamentos , Humanos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...